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Abstract

Numerous cognitive functions including attention, learning, and plasticity are influenced by the
dynamic patterns of acetylcholine release across the brain. How acetylcholine mediates these
functions in cortex remains unclear, as the spatiotemporal relationship between cortical
acetylcholine and behavioral events has not been precisely measured across task learning. To
dissect this relationship, we quantified motor behavior and sub-second acetylcholine dynamics
in primary somatosensory cortex during acquisition and performance of a tactile-guided object
localization task. We found that acetylcholine dynamics were spatially homogenous and directly
attributable to whisker motion and licking, rather than sensory cues or reward delivery. As task
performance improved across training, acetylcholine release to the first lick in a trial became
dramatically and specifically potentiated, paralleling the emergence of a choice-signalling basis
for this motor action. These results show that acetylcholine dynamics in sensory cortex are
driven by directed motor actions to gather information and act upon it.

Introduction

Acetylcholine is a major neuromodulator in the brain that influences diverse cognitive functions
that span timescales, including selective attention 224 arousal &% 8, reinforcement learning 2
210 11.12 and neural plasticity 1141216 Many of these functions are mediated through
acetylcholine’s influence on cortical neurons and circuits 1218, Cholinergic projections to cortex
arise from multiple basal forebrain (BF) nuclei that contain neuronal subgroups with distinct
projection specificity and arbor distributions within and across projection areas © 12 |ndividual
nuclei also show significant differences in the behavioral events which correlate with their
activity patterns 221, suggesting a topography of functions. Observation of the spatiotemporal
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dynamics of acetylcholine in cortex would further our understanding of how these convergent
cholinergic inputs influence cortically regulated cognitive functions.

The release of acetylcholine on cortical targets is classically considered to regulate arousal and
attention 118 in part through action on cortex. Increased cortical acetylcholine levels are
associated with 22 and required for induction of cortical desynchronization during active sensing
2 Acetylcholine release causes layer-specific modulation of responses in primary
somatosensory cortex (S1) to whisker stimulation 124, enhances sensory evoked responses in
A132and V122 and suppresses spontaneous activity in S1 during whisker movement £, which
improves stimulus discriminability and provides a potential mechanism for selective attention.

The role of acetylcholine in reinforcement learning is becoming better appreciated through
accumulating studies identifying which cholinergic neurons fire when during task acquisition and
execution. Cholinergic neurons in BF respond & and cortical acetylcholine transients are evoked
to reinforcement-predictive cues 2. However, the extent to which association learning sculpts the
response to reinforcement-predictive cues varies across reports, with such stimuli driving
increasing amounts of cholinergic activity in BF (tones and punishment 18, odors and reward 12)
and in nucleus basalis (NB) to basolateral amygdala (BLA) projections (tones and reward 1
across training, contrasting with the finding that reward-predictive tones show stable
acetylcholine release in BF with learning Z. Functionally, persistent activity of cholinergic
neurons bridges delays between conditioned stimuli and reinforcement signals, allowing cortical
acetylcholine-dependent frequency-specific potentiation and map plasticity in A1 €. Moreover,
BF cholinergic input is necessary ? and sufficient 12 for cue-evoked reward timing signals to
develop in V1 across associative learning. As for reinforcers, cholinergic neurons throughout BF
strongly respond to negative reinforcement 1218212228 nh,t gre inconsistently reported to
respond to positive reinforcers like reward. In primates, 70% of all BF neurons were significantly
modulated in a choice period, but only 25% in a reward period Z. In rats, reward-induced
acetylcholine release was not detected in mPFC 2. However, recent advances in cell-type
specific recording techniques have revealed that cholinergic neurons within BF do respond to
positive reinforcers, scaled by reinforcement surprise Z and encode valence-free reinforcement
error 12,

Motor actions are also associated with cholinergic activity, which could be challenging to
disentangle from cue and reward-driven effects due to sensory-motor feedback loops. Cortical
acetylcholine levels increase during locomotion &3 and orofacial movements . Licking is also
reported to drive cholinergic activity, though reports vary from strong acetylcholine release at lick
bout onset 2 and offset &, to weak release to licks 12 to none at all £. This variability may arise
from experimental differences in task conditions and sensory modalities or may reflect a
compartmentalization of acetylcholine functions based on nucleus, cell-type, and projection
targets. Regardless, since licking patterns are strongly influenced by reward expectation and
delivery 2, dissociating sensory cues and reward from these motor actions is crucial for
interpreting acetylcholine’s role in reinforcement learning.
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Here we sought to constrain how acetylcholine influences sensory cortex by measuring
spatiotemporal dynamics of acetylcholine in S1, an area that undergoes remarkable
representational plasticity during learning 2. We directly image sub-second changes in
acetylcholine concentration using a GPCR Activation Based sensor (GRAB-ACh3.0; 30) broadly
expressed on the surface of cortical neurons, bypassing the organizational complexity of
cholinergic afferents. High-speed videography during active whisker-guided object location
discrimination allows dissociation of cue and stimulus from tightly coupled motor responses,
while our response design allows dissociation of choice signalling and reward delivery from the
motor action of licking. Recording across weeks of training, we identify the behavioral correlates
of acetylcholine release in S1 during task performance and how tactile discrimination learning
specifically reorganizes those dynamics in the transition from novice to master.

Results

To measure the dynamics of acetylcholine in primary somatosensory cortex during tactile
discrimination learning, we employed a go/no-go single-whisker object localization task (Figure
1A ). We trained water-restricted head-fixed mice (n=8 mice) to search with a whisker for the
position of a thin steel pole presented in one of two locations along an anteroposterior axis
during a one second sampling period (Figure 1B), and to lick for a water reward during a
subsequent one second answer period if the pole was in the posterior location. Mice were cued
to the presentation and removal of the pole by the sound of a pneumatic valve. Licking during
the sampling period had no consequences, while licking in the answer period determined trial
outcome and extended the duration of the pole presentation.

Mice were trimmed to their C2 whisker at least one week prior to onset of imaging
experiments. All mice reached task mastery (>70% performance for 3 consecutive sessions)
within 1-3 weeks of training (mean 10.75 £ 2.02 sessions; mean 3373.75 + 754.09 (standard
error) trials Figure 1C). Trimming of the C2 whisker after task mastery dropped performance to
chance (Figure 1D), demonstrating the whisker-dependence of the task. Expert mice initiated
whisker exploration upon the pole presentation and withdrawal cue sounds (Figure 1E, F,
SFigure 1A). Since whisking amplitude was physically restricted when the pole was in the
go-associated proximal position, we examined the whisking patterns of go trials vs. no-go trials
separately. For both positions, trials with licks during the sampling and answer periods (i.e. Hit
and False Alarm) had more sustained whisking than trials without licks (i.e. Miss and Correct
Rejection; Figure 1G). Lick rates on Hit and False Alarm trials were indistinguishable during the
sampling period and diverged during the answer period once water was dispensed due to
reward collection on the Hit trials (Figure 1H). Licking rates on Correct Rejection and Miss trials
were zero by construction during the answer period, with occasional licks outside this period.

Acetylcholine dynamics were measured using two-photon imaging of superficial layers of
S1. The C2 whisker barrel was targeted for viral injection of AAV9-GRAB-ACh3.0 via intrinsic
signal imaging (SFigure 2A). Behavioral training commenced three weeks post injection, when
strong fluorescence signals were present in all mice (Figure 2A). To minimize the impact of a
rapid partial dimming of fluorescence following illumination onset (SFigure 2B), two-photon
imaging and illumination (15.44 fps, 940nm, 30-60mW out of objective) was continuous from the
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session start, and the first 100 seconds of the session were excluded from analysis. Phasic
increases in fluorescence across the entire field of view were observed shortly after most, but
not all onsets of pole presentation (Figure 2B). These fluorescence dynamics diverged across
trial outcomes (Figure 2C). Hit and False Alarm trials showed a strong, similar increase in signal
during the sampling and answer periods (example session, SFigure 2C; grand mean of expert
sessions Figure 2D). This was followed by a secondary response that, on average, persisted
into the inter-trial period. In contrast, Miss and Correct Rejection trials on average showed two
short latency, short duration increases in fluorescence following pole presentation and
withdrawal. Trial type averages within the primary whisker column and in the surround were
identical for all trial types (Figure 2E) supporting mesoscale spatial homogeneity in
acetylcholine dynamics within S1.

To investigate potential triggers of acetylcholine release in cortex, we compared the
acetylcholine dynamics across trial types to several classes of behavioral events, including pole
presentation and withdrawal cues, whisker exploration, licking, and reward. All trial types shared
a common time for pole presentation, and all trial types showed a small, short latency (2-3
frames, 130-195ms) increase in acetylcholine aligned to that cue (Figure 3A). Lick trials showed
much bigger and longer transients immediately following this initial hump. Trials without licks in
the answer period had a common pole withdrawal time, while trials with answer licks had a
variable withdrawal time. Alignment to pole withdrawal again showed a sharp upward transient
of acetylcholine across all trial types, though this was overlaid on longer duration acetylcholine
dynamics (Figure 3B).

Was acetylcholine release driven by the pole presentation cue per se, or was it driven by
a motor response to the cue (Figure 1E,F)? To test this, we examined the covariation of
cue-evoked whisking with cue-associated acetylcholine dynamics. We restricted our analysis to
no-lick trials to avoid potential confounds of licking-driven acetylcholine responses. We sorted
acetylcholine responses in no-lick trials by the average amplitude of the whisker motion within
500 milliseconds after the pole presentation cue (Figure 3C, D). A fraction of trials (23.9% mean
+ 21.8% per mouse) did not evoke whisker motion (<2° mean amplitude) upon pole
presentation, with most producing a range of whisking vigor (SFigure 3A). In trials without
cue-evoked whisking, there was no acetylcholine release following the cue (0.01% mean AF/F
for whisking amplitude <2°), while trials with cue-evoked whisking showed a positive relationship
between whisking amplitude and acetylcholine response (0.58% mean AF/F for whisking
amplitude >5°; 0.08% mean increase in AF/F per degree of amplitude (Figure 3E, SFigure 3B).
These findings were recapitulated in pole withdrawal-cued whisking and acetylcholine
responses (SFigure 3C-E). This implies that whisking, rather than whisker-pole contact drove
the responses, since whisking after pole withdrawal rarely causes pole touches. These data
demonstrate that cue-associated acetylcholine release in S1 is directly proportional to the
magnitude of the motor response (i.e. exploratory whisking) evoked by that cue. We conclude
that the motor response to cue, rather than the cue itself, drives cue-associated acetylcholine
transients in S1.
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The striking difference in acetylcholine dynamics across trial types (Figure 2C-E), in
particular Hit and False Alarm versus Miss and Correct Rejection, suggested that licking could
be a powerful driver of acetylcholine release in S1. We aligned trials across expert sessions to
the time of first lick, regardless of trial type or if the lick occured in the answer period, and sorted
by the number of licks in the trial (Figure 4A,B). Trials with no licks were aligned to the time of
the median first lick. On trials with licks, there was a sharp increase in acetylcholine level
beginning shortly before lickport detection of the first lick, which lasted 1-2 seconds (Figure 4C).
This lick response dwarfed the cue-associated transients on the no-lick trials (Figures 2E, 4C).
Licking preceded rhythmically at a regular modal inter-lick interval of 155ms in expert mice
(Figure 4D). The first lick drove a profound increase in mean acetylcholine over the following
second, jumping from 0.35% + 0.26% on no-lick trials to 1.60% + 0.42% with a single lick
(Figure 4E), an increase of 1.25% AF/F over baseline. Subsequent licks caused smaller
increases in mean acetylcholine over this period at a rate of 0.28% AF/F per additional lick.
Similarly, the duration of the lick-induced transient was 1.46 + 0.65s for a single lick.
Subsequent licks extended this transient 116ms per lick (Figure 4F), somewhat less than the
inter-lick interval (Figure 4D). This demonstrates that the primary driver of acetylcholine release
in S1 was the onset of a licking bout, with the vigor of licking modulating the magnitude and
duration of the release.

The early lick-evoked acetylcholine transients were followed by a longer late
acetylcholine rebound that began 1.5-3 seconds after the first lick (Figure 2C-E). We
hypothesized that the late response was driven by reward delivery, as observed in BF
cholinergic neurons 2 and BF to BLA projections 1. To test this, we compared the first lick
aligned responses on Hit trials (which are rewarded) and False Alarm trials (which are
unrewarded). Against our hypothesis, there was no significant difference in the amplitude of the
late acetylcholine response between Hit and False Alarm trials (Figure 5A), although there was
a small, but significant increase on Hit trials during a one second period following the first lick.
Could this difference be explained by reward delivery?

Rewards are only distributed upon a correct lick in the answer period. Hit trials had
higher acetylcholine levels than False Alarms during the answer period, but also had more licks
(Figure 5B,C). To control for increased acetylcholine release caused by additional licking
(Figure 4E), we pairwise compared mean acetylcholine levels of Hit and False Alarm trials
during the answer period for matched numbers of licks in the period. Hit and False Alarm
acetylcholine levels were essentially identical after accounting for the difference in lick count
(Figure 5D). We conclude that reward delivery does not cause acetylcholine release in S1,
consistent with prior electrochemical measurements in mPFC 2. Together, these data establish
that the main driver of acetylcholine release in S1 during tactile-guided choice behavior is
execution of the choice-signalling action, secondary drivers are exploratory whisker motion and
additional licking, while task initiation cues and reward delivery have no direct effect.

Acetylcholine regulates attention 22, which may change with task performance, familiarity,
or learning. It follows that training might increase acetylcholine release concurrently with
improved performance. On the other hand, training might reduce acetylcholine release, as a
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familiar task may require less attentional resources to solve or reduced neural plasticity once
established. To address these possibilities, we compared the acetylcholine dynamics for the first
three sessions of the full task training and the final three expert sessions in each mouse. We
found that the initial lick-triggered acetylcholine release was nearly twice as large in expert
sessions compared to early training sessions (AF/F 3.07 + 1.01% std expert vs. 1.67 £ 0.65%
std early; Figure 6A). The magnitude of the increase was directly proportional to session
performance with mean AF/F increasing 0.53% per 10% increase in correct rate (Figure 6B).
This increase occurred even though expert mice licked fewer times (Figure 6C,D) and at the
same pace (Figure 6E) as compared to early sessions. This increase of acetylcholine signal
after training was also not due to an increase of GRAB-ACh sensor expression as seen by the
following internal control. On no-lick trials, whisking-associated acetylcholine release slightly
increased following the pole-presentation cue, and slightly decreased following the
pole-withdrawal cue (Figure 6F). This closely matched the change in whisking to those cues
following training (Figure 6G). Thus, the relationship between acetylcholine fluorescence
change and whisker motion was stable across training. Finally, we examined whether training
induced potentiation of all licks, or only the first lick (i.e. the choice-signalling lick in expert
sessions), by repeating the analysis of Figure 4 on early sessions of the same cohort of mice. In
contrast to experts (Figure 4E), the first lick in early sessions drove a modest increase in
acetylcholine from 0.14% + 0.3% on no-lick trials to 0.50% + 0.52% with a single lick (Figure
6H), an increase of 0.36% AF/F over baseline. Thus, training induced a nearly 3.5x increase in
acetylcholine response over baseline to the first lick (Figure 61). Subsequent licks caused a
0.26% increase in AF/F per additional lick versus 0.28% AF/F per lick in expert mice (Figure
6H). The nearly identical slope, but shifted offset in the licking to acetylcholine relationship leads
us to conclude that training in tactile-guided choice behavior induces a dramatic and selective
potentiation of acetylcholine release in S1 to a choice-signalling action and this potentiation is
correlated to improved task performance.

Discussion

Recording and manipulation of cholinergic neurons originating in BF nuclei 2 3 3L has
established the importance of cholinergic signalling on multiple brain functions. However, the
complexity of BF organization 1% 22 has posed a challenge in linking specific cognitive functions
to acetylcholine dynamics in specific projection targets. By recording acetylcholine dynamics
directly in S1 (Figure 2) during whisker-guided object localization (Figure 1), we discovered
surprising differences in the triggers and dynamics between previously observed BF nuclei and
this cortical target essential for tactile discrimination 3. Nearly all acetylcholine release in S1
was attributable to directed motor actions (Figures 3, 4) rather than sensory input (Figure 3) or
reward delivery (Figure 5). Moreover, as task performance improved across training,
acetylcholine release to the first lick in a trial became dramatically and specifically potentiated
(Figure 6), paralleling the emergence of a choice-signalling meaning to this motor action.

Together, these data support a model that acetylcholine release in the sensory cortex is driven
by directed motor actions to gather information (e.g. whisking) and act upon it (e.g. licking). This
contrasts from reports that acetylcholine release is driven by reinforcement-predictive cues 112
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18 and reward itself 12, This difference may be because the auditory cue in our task does not
predict reward, only the temporal availability of a stimulus. In contrast to passive cue-reward
association, our task requires active exploration to gather reward-predictive information,
revealing a motor requirement for acetylcholine release. Our results also suggest that
cue-induced changes in motor behavior (e.g. increased whisking, sniffing or anticipatory licking)
and other orofacial movements 2 may also provide a meaningful contribution to acetylcholine
release in passive association tasks.

The lack of reward-evoked acetylcholine release in S1 may be due to several factors. One
possibility is that reward activity in BF is transmitted only to particular targets such as BLA 1, but
not S1, due to projection specificity in subpopulations of BF cholinergic neurons Z. Second, while
reward-delivery signals have been observed in cholinergic neurons of HDB and NB %, fiber
photometry in those areas show reward-associated transients are small relative to lick-evoked
transients and tightly correlated with an increase of lick rate following water delivery . Perhaps
reward-delivery only indirectly drives acetylcholine release via changes in licking patterns.
However, this result may depend on task and reward structure. Tasks with variable reward
probability have shown decreased cholinergic activity to highly likely rewards 1422, |n our task,
licking on go trials guaranteed reward, which may have shifted reward-delivery activity earlier to
the time of the choice-signaling lick, when reward becomes expected.

Intriguingly, the acetylcholine release associated with the first lick began ramping several
hundred milliseconds prior to lick detection (Figure 4C). This may be due to a combination of
following factors: whisking precedes licking and drives modest and additive acetylcholine
release (Figure 3), decision related activity precedes motor action by some amount of time 22,
and the tongue requires about 150-200ms from protrusion initiation to lickport contact 2. These
are partially counterbalanced by the indicator rise time, which is dependent on the underlying
acetylcholine concentration profile and likely on the order of tens of milliseconds for a few
percent AF/F change 2. Thus, we must consider the possibility that some of the first
lick-associated acetylcholine dynamics are caused by an internal choice deliberation, rather
than the initiation of motor action. This possibility is reinforced by the observation that onset of
acetylcholine release is more closely aligned to first lick on early than on expert sessions
(Figure 6A), suggestive of expert-specific choice-associated dynamics overlaid on
motor-triggered dynamics common to both session classes.

The patterns of acetylcholine release in response to whisking and licking suggest potential
functions for acetylcholine on sensory cortical circuitry 441, VIP cells in S1 are activated by
whisking # via acetylcholine release £ leading to disinhibition of excitatory neuron dendrites
where top-down contextual information arrives in S1 #4546 Thys, whisking-induced
acetylcholine release could enhance integration of contextual information with sensory input in
S1 neurons, providing, for example, a potential mechanism for combining motor and touch
signals to generate location specific codes 4 and percepts %. VIP activation also gates neural
plasticity in cortex 4. Higher task performance is associated with increased acetylcholine in V1
2 Qur similar results in S1 (Figure 6B) identified that this increase is specific to the first lick and
persists for several seconds (Figure 4). Thus, this increase is well-poised to provide windows of
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enhanced neural plasticity via VIP cell activation while the consequences of decisions are
evaluated.

This work is only a step towards understanding the function of acetylcholine dynamics in cortex
and sensory processing. We did not determine the extent to which the S1 acetylcholine
dynamics reflect activity from nucleus basalis (NB) versus horizontal diagonal band (HDB) or
their subdivisions which project to S1 Z. An intriguing possibility is that the selective potentiation
of choice-signalling action may be dissociable by afferent source. Our observations were made
from pooled fluorescence responses of GRABs expressed across all neurons. The specificity of
acetylcholine action on particular cortical cell types (e.g. VIP-expressing interneurons) raises the
question of whether this reflects differing patterns of receptor expression 2 or also involves
preferential targeting by cholinergic axons. Finally, while we quantified the triggers and
timescales of acetylcholine dynamics on cortical targets, substantial additional work is required
to determine the functional consequences of those time limits. Manipulation of local
acetylcholine dynamics and cellular targets at specific moments during task performance and
acquisition could clarify acetylcholine’s potential roles in regulation of sensory integration and
cortical plasticity.
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Methods

Key Resources Table

Reagent or Resources
Virus

AAV-GRAB-ACh3.0

Sources

Vigene

Experimental Models: Organisms/Strains

Mouse: C57BL/6J

Software and Algorithms

Matlab
Scanbox

BControl

Other

Two-photon microscope

NIR laser (2 photon
microscope)

StreamPix
Pneumatic slide
Solenoid valve
CMOS camera

Telecentric lens

Jackson Laboratory

Math Works
Dario Ringach, UCLA

Carlos Brody

Neurolabware

Spectra-Physics

Norpix

Festo

Lee Company
Basler

Edmund optics

Identifier

RRID:IMSR_JAX:00064

2018B, 2021a
https://scanbox.org

https://brodylabwiki.princeton.
edu/bcontrol/index.php?title=
Main_Page

InSight DS+

RRID:SCR_015773
Cat#170496
Cat#acA800-500um
Cat#acA800-500um
Cat#58-259

Experimental Model and Subject Details

Animals

We used 2.5-4 months old male (n=2) and female (n=6) C57BL/6J mice (#000664, The Jackson
Laboratory). Mice were maintained on a 12:12 reversed light-dark cycle. After water restriction,
health status was assessed everyday following a previously reported guideline (Guo et al.,
2014). All procedures were performed in accordance with the University of Southern California
Institutional Animal Care and Use Committee Protocol 20732 and 20788.
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Method Details

Headbar surgeries

Before each surgery, rimadyl tablet was given 0.5 mg/tablet 24 hours before surgery.
buprenorphine-SR and marcaine were injected subcutaneously at 0.5 mg/kg and 2% right
before the surgery. A customized stainless steel headbar was attached to the skull using layers
of Krazy glue (Elmer’s Products, Inc) and dental cement (Lang Dental Mfg. Co., Inc).

Intrinsic signal imaging

Intrinsic signal imaging (ISI) was done 3 days after headbar surgery and 7 days after the cranial
window surgery. All whiskers except the C2 whisker were trimmed before ISI. To identify C2
whisker, C2 whisker was stimulated using a Piezo stimulator when mice were under light
isoflurane anesthesia (0.8-1.0%). Comparisons of acetylcholine dynamics inside the C2 column
versus surround were based on column-sized hand-drawn ROls centered on the ISI hotspot.

Cranial window and virus injection surgeries

In all mice C57BL/6J mice (n=8), AAV9-hSyn-GRAB-ACh3.0 (Addgene Plasmid #121922
https://www.addgene.org/121922/ ) was injected from 1x aliquots during the cranial window
installation. A glass capillary (Wiretrol® Il, Drummond) was pulled to 10-20um in tip diameter
using a micropipette puller (Model P-97, Sutter instrument), and tip beveled to about 30
degrees. The glass window was 2x2 mm glass hand fused to 3x3 glass (both 0.13-0.17 mm
thickness) with ultraviolet curing glue (Norland optical adhesive 61, Norland Inc.).

Before each surgery, rimadyl tablet was given 0.5mg/tablet 24 hours prior and
Buprenorphine-SR was injected subcutaneously at 0.5 mg/kg immediately before. A 2x2 mm
square of skull whose center was the identified C2 whisker barrel region was removed. Virus
was backfilled into a pipette of mineral oil (M5904, Sigma-Aldrich). We injected 400nl virus into
the identified C2 barrel column through a single injection site over 4 min at 300um below pia,
withdrawing after an additional two minutes. The exposed brain region was then covered with
the home-made glass window. Targeting of the C2 column was confirmed via IS| one week after
cranial window surgery, after which water restriction commenced.

Behavioral task and training

Mice were trained in a whisker-guided Go/No-go localization discrimination task (O’Connor et
al., 2010). During training, a smooth black pole with 0.6 mm diameter (a plunger for glass
capillary, Wiretrol® I, painted with black lubricant, industrial graphite dry lubricant, the B’laster
Corp.) was vertically presented at two positions using a pneumatic slide (Festo), with the
posterior position rewarded (Go trials) and anterior position non-rewarded (No-go trials). The
pole came into touch range within 100 ms of pole motion onset. Mice used a single whisker (C2)
to discriminate positions. Mice indicated their decision through licking or withhold licking during
the answer period according to pole position. Licks in the 1s sampling period were ignored. On
Hit trials, mice received water rewards on the first lick in the 1s answer period. On False Alarm
trials, based on each mouse’s learning process, each lick during the answer period re-triggered
a timeout that lasted 0-4 seconds. Miss and Correct Rejection trials were unpunished. The
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behavioral task was controlled by MATLAB-based BControl software (C. Brody, Princeton
University).

We trained mice in a stepwise manner. First, we associated the timing of cue and pole to reward
to let mice learn that water can come out of the lick port and the water is temporally associated
with a pole presentation. Mice usually learned the association in a few minutes. Then we
introduced Go trials only to let the mice learn the trial structure, which usually took 1-2 sessions
for the mice to achieve high performance. After the mice were able to get over 10 Hit trials in a
row, we introduced No-go trials. During early training, we adjusted the No-go trials probability
and time-out time on False Alarm trials to help mice learn, settling on 50% No-G- probability and
Os timeout once mice did not get discouraged and stop licking after a series of misses. Expert
threshold was set at >70% accuracy continuously for 3 sessions. After the animals became
experts, we trimmed the animal's last whisker (C2 whisker) to test whether the mice learned the
task in a whisker-dependent manner.

Whisker motion acquisition and analysis
Backlit whisker motion video was acquired with a CMOS camera (Basler acA800-500um),
StreamPix Software (NorPix Inc.) at 311Hz through telecentric lens (0.09X%2” GoldTL™
#58-259, Edmund optics), a CMOS camera (Basler acA800-500um). to record whisker motion.
Camera frames were triggered and synced by BControl and Ardunio. We tracked whisker
position with the Janeha Whlsker Tracker

, Clack et al., 2012). The fur was
masked improve tracklng quality. The whisker’s azimuthal angle was calculated at the
intersection of the mask and whisker trace. Whisking midpoint, amplitude and phase was
decomposed from this angle using the Hilbert transform, as described in Cheung et al., 2019.

Two-photon microscopy

The two-photon microscope (Neurolabware) used a galvanometer scanner (6215H, Cambridge
Technology), Pockels cell (350-105-02 KD*P EO modulator, Conoptics), a resonant scanner
(CRS8, Cambridge Technology), an objective (W Plan-Apochromat 20x/1.0, Zeiss), a GaAsP
photomultiplier tube (H10770B-40, Hamamatsu), and a 510 nm emission filter (FF01-510/84-50,
Semrock). We used an 80 MHz tunable laser at 940 nm (Insight DS+, Spectra-Physics) for
GRAB-Ach3.0 excitation. Imaging was continuous throughout each session. The scope was
controlled by a MATLAB-based software Scanbox with custom modifications. Imaging frequency
was 15.44 frames/s on the size of the FOV (512 x 796). Spatial resolution was 1.4 um per pixel.

Data analysis and statistics

All imaging data were processed in Matlab. We excluded the first 100s for each session due to
non-linear photodynamics which stabilized after 100 seconds of continuous excitation scanning
(SFig2). In Figure 2B we used the mean fluorescence intensity of the sample session as
baseline. In Figure 2C-2E we used 16 frames after trial start as baseline. Figure 3A and 3B we
used 1 second before stimuli (pole onset and pole withdrawal) as baseline). Figure 3D we used
16 frames after trial start as baseline. Figure 4A, 4B, 5A and 6A we used 32 frames before first
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lick to 16 frames before first lick as baseline. Statistical comparisons were made using paired T
Test corrected for multiple comparisons.
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Figure 1 - Learning of whisker-guided object location discrimination and associated motor actions.
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Figure 2 - Acetylcholine release in S1 varies with trial outcome
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Figure 3 - Whisking drives acetylcholine release in $1
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Figure 5 - Reward delivery does not drive acetylcholine release in S1

Acetylcholine - expert sessions 0.35¢ Licking distributions - expert sessions
4+ Hi m Hit
it 0.3 False Alarm
s False Alarm
L
T > 0.25
< =
EX ® 02
Qo
o
—
2 015
C
3
. . . o 0.1
Time from first lick (s)
1c 0.05
0.8
§ 0 1 2 3 4 5 6 7
g 06 Licks in answer period
=
5 04 D
n 0.2 — Acetylcholine, matched lick counts - expert sessions
. L
c %
0 | . . q 5 L
2 -1 0 1 2 3 4 5 6 7 2
. . ~ 4
Time from first lick (s) 3
B 6 M
Q 2+
p=6.80e-5 3 1
7k B R
| 1 % 0 Hit
g [ False Alarm
6 -1 L 1 I I . | )
@ 1 2 3 4 5 6 7
S st Licks in answer period
=
S 1.
@ 4f
Qo
1S o 08
2 3 2
@ 0.6 |-
(&]
2| =
504
i 7}
0.2
0 L L [0 — T e S P S |
False Alarm Hit 1 2 3 4 5 6 7

Licks in answer period
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Figure 6 Learning selectively potentiates acetylcholine release to choice-signalling licks in $1
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rate and acetylcholine fluorescence change within 1 second following first lick. Fit equation r = 0.05328*x-0.0123. C. Mean lick rates for trial types in early (top) and
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